小小的小数点,其重要性不可忽视
在秦汉以前,是以“径一周三”作为圆周率,这就是“古率”。
后来发现古率误差太大,圆周率应是“圆径一而周三有余”。
于是,祖冲之在前人成就的基础上,经过刻苦钻研和反复的演算终于得出了现在的圆周率。
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。
在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。
圆周率用希腊字母π表示,是一个常数,是代表圆周长和直径的比值。
它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。
而用十位小数3.141592653便足以应付一般计算。
即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
1965年,英国数学家约翰·沃利斯(JohnWallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。
2
015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。