关于正整数,来看看小信的介绍。
整数是不包括小数部分的数,正整数是指大于0整数。例如1,2,3……等可以用来表示完整计量单位的对象个数的数,是正整数。编辑本段整数分类我们以0为界限,将整数分为三大类1.正整数,即大于0的整数,如,1,2,3,…,n,…2.0既不是正整数,也不是负整数(0是整数)。
和整数一样,正整数也是一个可数的无限集合。在数论中,正整数,即1、2、3……;但在集合论和计算机科学中,自然数则通常是指非负整数,即正整数与0的集合,也可以说成是除了0以外的自然数就是正整数。正整数又可分为质数,1和合数。正整数可带正号
我们以0为界限,将整数分为三大类
1.正整数,即大于0的整数如,1,2,3,…,n,…
2.0
3.负整数,即小于0的整数如,-1,-2,-3,…,-n,…为什么如此分类呢?简单的说,就是这三类数有质的不同,即本质区别。正因为如此,这种分类就很稳定,也很实用,可用于推理的分类判断环节。说得有点抽象了,自己以后慢慢体会它的好处了。
整数是不包括小数部分的数,正整数是指大于0整数。例如1,2,3……等可以用来表示完整计量单位的对象个数的数,是正整数。编辑本段整数分类我们以0为界限,将整数分为三大类1.正整数,即大于0的整数,如,1,2,3,…,n,…2.0既不是正整数,也不是负整数(0是整数)。
和整数一样,正整数也是一个可数的无限集合。在数论中,正整数,即1、2、3……;但在集合论和计算机科学中,自然数则通常是指非负整数,即正整数与0的集合,也可以说成是除了0以外的自然数就是正整数。正整数又可分为质数,1和合数。正整数可带正号