关于指数与指数幂的运算,来看看小颖的介绍。
一般地,在数学上我们把n个相同的因数a相乘的积记做a^n[1]。这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a^n中,a叫做底数,n叫做指数。a^n读作“a的n次方”或“a的n次幂“。
1、[a^m]×[a^n]=a^(m+n)【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n)【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn)【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m)【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
(2019-根号9)o=1对于零指数幂(1)任何不等于零的数的零次幂都等于1。
即(a≠0)(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。即(a≠0,p是正整数)。(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)
(1)任何不等于零的数的零次幂都等于1。
即(a≠0)。
(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
即(a≠0,p是正整数)。
(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)
1.同底数幂相乘,底数不变,指数相加。
即(m,n都是有理数)。
2.幂的乘方,底数不变,指数相乘。
即(m,n都是有理数)。
3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即=·(m,n都是有理数)。
4.分式乘方,分子分母各自乘方。
即(b≠0)。
除法
1.同底数幂相除,底数不变,指数相减。
即(a≠0,m,n都是有理数)。
一般地,在数学上我们把n个相同的因数a相乘的积记做a^n[1]。这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a^n中,a叫做底数,n叫做指数。a^n读作“a的n次方”或“a的n次幂“。